
ARBOR Ciencia, Pensamiento y Cultura

Vol. 189-764, noviembre-diciembre 2013, a086 | ISSN-L: 0210-1963

doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

MAKING IT REAL: LOEBNER-
WINNING CHATBOT DESIGN

HACIÉNDOLO REALIDAD:
GANADOR DEL PREMIO

LOEBNER DEL DISEÑO CHATBOT

Bruce Wilcox* and Sue Wilcox**
*B.A. Comp.Sci.

**B.A. Psych., M.A. Soc.Admin., M.Sc. Comp.Sci., Dipl. Fine Arts
gowilcox@gmail.com

RESUMEN: Durante los últimos tres años, nuestros chatbots han
conseguido dos veces el primer puesto y una el segundo en el
concurso Premio Loebner, con un personaje distinto cada año
(Suzette, Rosette, Angela). Suzette, incluso consiguió engañar a
un juez humano.
Un chatbot de clase mundial debe contar la historia de su vida,
tener una personalidad coherente y responder emocionalmente.
Se necesita una gran cantidad de secuencias de comandos así
como un motor de gran alcance diseñado para apoyar el pro-
cesamiento del lenguaje natural en diferentes maneras y lograr
que le resulte relativamente fácil al autor toda esa secuencia de
comandos.
En este artículo se analiza brevemente ChatScript, el código
abierto Natural Language en el que programar y poner en mar-
cha nuestros robots. A continuación, se describe cómo construi-
mos chatbots y lo que hemos aprendido hasta ahora.

PALABRAS CLAVE: Chat; chatbot; ChatScript; conversación;
Loebner; Inteligencia Artificial; Lenguaje Natural.

ABSTRACT: For the last three years, our chatbots have come
in 1st twice and 2nd once in the Loebner Prize Contest, with
a different persona each year (Suzette, Rosette, Angela).
Suzette even fooled a human judge.
A world-class chatbot should tell the story of its life, have
a consistent personality, and respond emotionally. It takes
a lot of script. And it takes a powerful engine designed to
support natural language processing in a variety of ways and
make it relatively easy to author all that script.
This paper briefly discusses ChatScript, the open-source
Natural Language scripting language and engine running our
bots. Then it looks at how we construct chatbots and what
we have learned.

KEYWORDS: Chat; chatbot; ChatScript; conversation; Loebner;
Artificial Intelligence; Natural Language.

Citation/Cómo citar este artículo: Wilcox, B. and Wilcox, S.
(2013). “Making it Real: Loebner-winning Chatbot Design”.
Arbor, 189 (764): a086. doi: http://dx.doi.org/10.3989/
arbor.2013.764n6009

Copyright: © 2013 CSIC. This is an open-access article distribu-
ted under the terms of the Creative Commons Attribution-Non
Commercial (by-nc) Spain 3.0 License.

Received: 10 July 2012. Accepted: 15 September 2013.

EL LEGADO DE ALAN TURING / THE LEGACY OF ALAN TURING

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

M
aking it Real: Loebner-w

inning Chatbot D
esign

2

a086

INTRODUCTION

The task of a chatbot is to create an illusion – the
illusion that you are talking with someone who un-
derstands and cares about what you are saying. It
doesn’t. However, for moments at a time it is possible
to fake it. One of our jaded testers, who had to con-
verse with our most recent chatbot, Angela, for hours
at a time, wrote about the final version:

The talk started brilliantly, so light and witty, I lo-
ved it. Really enjoyed some parts. On a few occa-
sions I’ve noticed myself so immersed in the expe-
rience I forgot I’m in an illusion.

Success! The question for this paper is How do we
achieve this illusion? It isn’t by accident.

CHATSCRIPT

The foundation of all of our chatbots is ChatScript,
an open source scripting language and the engine that
runs it. Bruce wrote it specifically to circumvent major
failings in other chat languages. ChatScript is an ex-
pert system, generally matching inputs via patterns of
meaning to specific outputs.

Rules

The script is a collection of rules. Almost all rules fit
on a single line. Generally, rules have four parts: type,
label, a pattern in (), and an output. Here is a simple
rule:

?: MEAT (do you like meat) I love meat.

The type specifies when the rule can be tried. The
types are:

t: – a gambit

s: – a responder for user statements

?: – a responder for user questions

u: – a dual responder that can react
to both questions and statements

a: b: c: … – a rejoinder at a given level of nesting.

Gambits are available when the chatbot wants to
volunteer output. Rejoinders are associated with a
specific rule and are matched against user input only
when that rule generated the most recent chatbot
output. Responders are matched against user input
without restriction.

The label is optional, and serves both as comment,
a place to find easily in a trace, and as a destination
tag for other rules to act upon this rule. For example

a rule can enable or disable another rule, or can reuse
its output script and rejoinders as its own.

The pattern in parens specifies when a rule is
allowed to trigger. Gambits don’t usually care about
user input and are not required to have a pattern,
though if they want to be context sensitive they can
have one. All other rule types require a pattern.

After the pattern is the output. Most of the time it
is just literal text to say. But it can be arbitrarily com-
plex code with or without output text. That code can
loop, execute conditionally, invoke topics (bundles of
rules), call engine routines, adjust variables, inference
through facts, etc.

Pattern Matching

Name That Tune was a TV game show where you
tried to guess a tune by hearing as few notes from it as
possible. Matching the meaning of what a user says is
a similar game, trying to figure out his meaning using
as few words as possible. You cannot write enough ru-
les to match every word of every possible input preci-
sely. So there is always a tradeoff between writing an
overly general pattern and an overly specific one. The
overly general will match inappropriately at times.
The overly specific will fail to match when it should.
The task is simultaneously easier and harder on mo-
bile, where users type less. Typing less usually means
there are fewer useful keywords in what they type.
You have less likelihood of matching the wrong things,
but it is harder because the user makes heavier use of
the context, pronouns, and texting shortcuts.

Pattern matching in ChatScript is both concise and
powerful, yet usually easy to read. Patterns can con-
sist of keywords and wildcards of varying specificity,
tests on context, and tests on negative space (that
some keywords do not appear). A pattern is enca-
sed in parens, so all data after the closing paren is
output.

#! I really love the essence of you

s: LOVE (I * love * you) That is sweet of you.

The above responder reacts only to statements (s:).
It has a label called LOVE. The pattern matches the
user saying 3 keywords I, love, you, in that order but
not necessarily contiguous and not necessarily at the
start of the input. The output is That is sweet of you.

We always put a sample input comment above a
rule (#!). This allows one to skim code without having
to interpret script, to see what you’ve covered. It also

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

Bruce W
ilcox and Sue W

ilcox

3

a086

allows the system to manipulate the rule in various
ways for automated testing. It is the unit test of a rule.

The above pattern is overly general. It can match I
love steak and I hate you. You can tighten this pattern
by using more restrictive wildcards. The wildcard *~2
allows a gap of 0, 1, or 2 words.

s: LOVE (I *~2 love *~2 you) That is sweet of you.

This matches I really love all of you and doesn’t
match I love steak but hate you. *~2 is common. It
allows a determiner and adjective to fit, without
allowing too much else to seep in.

Of course the pattern also matches I do not love you,
which has the completely wrong meaning. To prevent
that one can define the “negative space” of matching
using the ! operator.

s: LOVE (!not I *~2 love *~2 you) That is sweet of you

The ! operator says make certain this keyword (not)
is not found at this location or later in the input.

Many meanings can be expressed with keywords in
different orders. You like what food? and What food
do you like? flip the order of essential keywords you
and food and like. ChatScript has the << >> operator
to find keywords in any order anywhere in the input.

#! Do you like spaghetti?

?: (!not << you spaghetti like >>) I love spaghetti.

Using ChatScript’s pattern matching, while the sys-
tem cannot understand meaning in general, you can
write patterns to trap specific meanings, which is a
very close approximation in many cases.

Standardization

ChatScript simultaneously matches multiple forms
of a keyword. For nouns, plurals standardize to singu-
lar. Verbs switch to infinitive. Adjectives and adverbs
revert to their base form. Determiners a an the some
these those that become a. Personal pronouns like
me, my, myself, mine move to the subject form I. Text
numbers like two thousand and twenty one and pla-
ce numbers like second transcribe into digit format
and floating point numbers migrate to integers if they
match value exactly. And there are others.

#! I am walking away from the homes.

s: (I * walk * home) OK.

The above would match I walk home and me walked
home and the sample input.

You can block standardization either by using a non-
standard form of a word or by putting an apostrophe
before the word. The following does not respond to
me walked home or I am walking home.

#! I walked away from the homes.

?: (‘I * walked * home) OK.

Macros

For common patterns (or output script) you can de-
clare macros. Whatever script is in the macro is execu-
ted when you see the macro name (which starts with ̂)
and its arguments. So you might see:

#! Which cheese do you like best?

?: (^WHAT_YOU_FAVORITE (cheese)) I love
cheddar.

where the macro ̂ WHAT_YOU_FAVORITE takes in one
argument and covers all manner of inputs that mean
What is your favorite xxx.

Concepts

In addition to individual words, you can define co-
llections, called concepts, of words and phrases and
other concepts. Anywhere a keyword can be used,
you can use a concept.

concept: ~meat [hamburger steak beef chicken
lamb veal]

concept: ~ingest [eat swallow chew munch “take
in” consume]

concept: ~like [adore love like “take a shine to”
“be partial to”]

concept: ~negation [not never rarely uncom-
monly]

A more generalized pattern using concepts is this:

#! I really love chicken.

s: LOVE (!~negation << I [~like ~ingest] ~meat
>>) You are obviously not a vegan.

This pattern matches the user saying most forms of
liking or eating some kind of meat. You can locally defi-
ne a concept by placing keywords within square brac-
kets. One does this if the use will be rare. Otherwise
you’d just define a new concept with the contents of
the brackets.

ChatScript ships with about 1500 concepts, ranging
from specific: ~crimes_of_mobsters

𝖃𝖐𝕾Ꮩ⊔⊂⊃ ∀

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

M
aking it Real: Loebner-w

inning Chatbot D
esign

4

a086

to abstract: ~angry_event and ~bodily_states, to
broad: ~food, ~hobby, ~number, ~noun.

With concepts and standardization comes the need
to capture which word the user actually used. _ in front
of anything will memorize it (original and standardized)
onto consecutive variables named _0 _1 _2 …

#! I drank cups of teas last night.

?: (I * _~ingest * _~beverage) Why do you _0 ‘_1 ?

The above takes in the sample input and outputs
Why do you drink teas? The use of ‘ in front of the
output variable means the original form (teas),
otherwise it uses the standard form (drink).

Topics

Collections of related rules are bundled into topics.
Topics serve several functions. They encapsulate spe-
cific areas of conversation so that they can be autho-
red independently. They allow the engine to be more
efficient by only checking the subset of all rules poten-
tially relevant to the input. They help organize rules so
they don’t conflict. And they create a narrative flow of
material on a subject.

A topic consists of a name, some optional control
flags, a bunch of keywords (defining a concept at the
same time), and then the collection of rules. All gam-
bits must precede all responders. This is an efficiency
measure for the engine and allows one to see the un-
derlying chat flow the topic intends.

topic: ~personal_self [age sex height weight old]

t: How old are you?

#! 35

a: (_~number>30) Over the hill.

#! Eighteen

a: (_~number==18) Have you had your first coc-
ktail yet?

#! yes

b: (~yesanswer) Did you overdo it?

#! no

c: (~noanswer) How restrained of you.

t: AGE () I am 30 years old.

#! How sad

a: (!? ~badness) I’m used to it.

#! what is your age

#! how old are you

?: (<< [how what] you [old age] >>) ^reuse (AGE)

A topic is invoked in gambit mode or responder
mode. In gambit mode, it dishes out its gambits in or-
der. Each time a rule generates output, it is marked as
used up, so it will move onto another rule next time.
When it runs out of gambits, the topic exits. In respon-
der mode it will jump down to the responders area
and try to find a match to the input. It will keep trying
responders until it finds one that generates output or
tries them all unsuccessfully.

This simple topic illustrates a bunch of useful points
about ChatScript.

First, ChatScript is very compact and visual. One can
rapidly skim to see what is happening. And you can
easily author script in any text editor.

Second, we usually ask a question and then provide
our answer. Reasons for this will be explained later.

Third, we often put the significant output on a gam-
bit and reuse it from a responder. Putting meat on a
responder is wasteful, because the user never hears it
unless he asks for it. We prefer to volunteer as much
content as possible. And there’s no reason to script it
twice, hence we do a reuse to a label. Furthermore,
the engine by default disables any rule after it has exe-
cuted, to avoid repetition. We say that conversation is
self-extinguishing. Like an old married couple, the user
and the chatbot run out of things to say over time.
Reusing a gambit is particularly effective in this light. If
the user asks how old are you before the chatbot gets
around to volunteering it, the rule that outputs is the
AGE gambit called from a responder. That gambit will
be marked used up so when the topic gets around to
gambit-ting again, the topic will skip over the used one,
avoiding repetition. On the other hand, if the chatbot
volunteers it first and later the user asks the question
anyway (maybe the user forgot the answer), the chat-
bot will use the responder to restate the answer (by
default reuse() can say even an erased rule).

Parsing and Introspection

ChatScript has a built in part-of-speech tagger and
parser, and performs proper name identification,
idiom substitution, and spell checking. Input like:

angelina jolie doesn’t own a lin transforms into An-
gelina_Jolie does not own a lion

Chat input is at times ungrammatical or not parseable,
but at other times the script can make use of the abo-

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

Bruce W
ilcox and Sue W

ilcox

5

a086

ve capabilities. The engine also supports introspection,
allowing the script to see into and interact with engine
functions. Our scripts typically parse and run scripts on
all of the output of the chatbot, to automatically manage
such things as pronoun resolution and tag questions.

PERSONALITY DESIGN

While ChatScript is a marvelous tool, it is not a chat-
bot. For that you need the script itself. And to write
that script you need to define a personality, much as a
novelist crafts a character. Who is the chatbot? What
do they do? Who are their friends? What is their life
story? We want to create a consistent being with a
logical set of interests and intentions living in a ratio-
nal world. The more a user can model the character’s
personality, the more engrossed the user can become
in the reality of a fictitious world.

This means Sue writes a detailed biography. She
starts with an overview of what the character is like
(half a page). The bio then covers early years, family
structure, where they live, how they live, what a nor-
mal day is like, how they relate to each other, what
their interests are and where they work. For all the
major topics like school, work, family, music, movies,
books, etc, she writes what the character likes and
dislikes and what incidents have happened in their life
which shape their taste and personality. This year’s
bot Angela is from the Outfit7’s mobile app Tom Loves
Angela. The Angela bio is 25 pages long. It’s not all
written at once. Rather, prior to scripting a topic, that
chunk of the chatbot’s life is added to the bio.

Of course, the bio (and therefore the scripting)
should be consistent. You can’t change attitudes and
reactions willy nilly. Perhaps take as a guideline a psy-
chological personality type, an astrological type, a ho-
meopathic personality type, or some character from
another story. Something to give you a framework for
predicting how a character will react.

The bio is useful not just for getting the basic story
down for each topic, but also for allowing indepen-
dent writers to be in synch on the character. The bio
allows multiple people to brainstorm on that area,
quarrel, suggest ideas, etc, before scripting happens.
And it can also be cut and pasted to become a fair
amount of a topic. So it’s not wasted writing work. We
keep our bio on Google Docs so anyone can read it but
only the head writer and project manager can edit it.
The comments sidebar allows any writer to suggest
changes. As the bio will underlie any future projects
for Angela, it’s important it be kept up to date.

Normally, when developing a character, we would
write about the people they relate to. In Angela’s
case we were asked to be deliberately vague about
her close female friends, which made Sue’s job more
difficult. A character is shaped by its relationships
and without any it can seem very two dimensional.
Most people like to talk about how their friends
are doing, what they’ve just done with them, what
they are about to do with them – this was all ruled
out. Eventually we dropped in a few more distant
relationships with work people, grandparents, and
former school friends while not naming any close
friends. It was like protecting the loved ones of a ce-
lebrity from their fame. As she couldn’t talk about
her best friends, we had to give her a more even-
tful life so she could talk about that instead. So now,
instead of only talking about her schooldays and her
gap year, she can discuss her summer jobs, her ho-
bbies (which are almost a career), her internships,
and her relationship with Tom, her boyfriend from
OutFit7’s Talking Friends collection.

DESIGNING A TOPIC

With the biography written, the next stage is to
convert that 3rd person material into 1st person script.
Sue writes the first draft of a topic. We have different
kinds of topics, depending on how they are used.

Gambit topics keep the conversation moving by
making statements and asking questions. They are
the meat and potatoes of the conversation. They
guide the user through an intended conversation on
a subject. They always have a list of topic keywords,
to enable the system to find related rules. For such
topics, Sue finds in the bio the most interesting start
(the teaser or hook) to reel the user into the topic.

Sue works through that part of the bio, intersper-
sing telling the character’s viewpoint (My favorite
food is milk) with asking the user questions about
their corresponding view (What is your favorite food).
Usually, but not always, the user is asked first. If you
volunteer your character’s attitude first you build up
a sense of controlling the conversation and make it
hard for the user to think of their own response. You
also force them to blurt out their own answer before
you have asked them the question, making the system
look stupid when it can’t handle it because all the re-
joinders are set after the question itself. Sometimes
we switch the order. Sometimes we do a couple of
questions in a row or a couple of statements in a row.
Variety. Make it feel natural and not structured. But
usually we alternate question then answer.

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

M
aking it Real: Loebner-w

inning Chatbot D
esign

6

a086

Reactor topics consist only of responders and are
generally invoked by some other topic rather than
having topic keywords. For example a list of all the
major movie stars and Angela’s one-liner comment
on them would be the ~movie_react topic. It would
be called when the general movies topic detects you
named an actor, to see if Angela wants to comment
on it specifically. If not, then some general comment
might be made like: xxx is good actor. What was their
most recent film?

Quibble topics consist only of responders. They do
not have topic keywords, but are directly invoked by
the control topic when no answer has been found by
other means. It makes a comment based on some
aspect of the sentence. Quibbles are discussed in de-
tail a bit later.

A generic topic is like a quibble topic in that it has no
keywords and consists only of responders. But unlike
quibbles, it is specific to the character. It consists of
answers to questions that don’t have a natural topic
home. For example:

#! do you fail at anything

?: (<< you [failure fail] [something anything any]
>>) I’m rotten at math.

The control topic will call the generic topic before
calling a quibble topic if normal topics have failed.

A story topic is a gambit topic which is primarily a
series of statements that tell a story. There may be
responders and rejoinders for predictable user input,
but mostly we are expecting the user to just say OK,
cool, etc. It has a special set of wrapper rules that pre-
vent a story from being launched accidentally, and
attempts to corral the user from straying from it too
easily while still allowing him to make comments.

The control topic uses ChatScript to control the con-
versational flow. It has very few rules, but they are
generally conditional programming script instead of
output text. E.g,

u: () . . .

current topic tries to respond

if (%response == $$startresponse) { nofail(TOPIC
respond($currenttopic)) }

if it fails, get all topics referred to by keywords
and try them one by one

if (%response == $$startresponse) { ...

Sue writes the gambits and specifies in English what
rejoinders she expects from a user and the matching

response. She may also sketch out what questions
users might ask and the responses. She uses rudimen-
tary elements of ChatScript to shape the script and
indents rejoinders appropriately to indicate the depth
structure of the replies. For the very first pass at the
script it’s better to write as rapidly and spontaneously
as possible to keep the tone of a normal conversation.

Outfit7 also had a couple of people writing draft to-
pics and scripting them, to come up to speed on using
ChatScript. We reviewed and revised their work as
needed.

WRITING SCRIPT

Bruce then converts the rejoinders and responders
into rules because he is fluent in all the concepts and
capabilities of ChatScript, and so can generate pat-
terns almost as fast as he can read Sue’s prose.

A critical issue in responders is being able to an-
swer any question you pose to the user. When the
bot asks the user a question, you set up the expec-
tation that he can ask it of the bot. Likely he will, as
conversation tends to maintain a balance of intima-
cy. There is even a common English language con-
vention to do just that called the tag question (which
Angela can handle correctly).

Do you like cars? => I love cars, and you?

Bruce makes a list of questions from the gambits
and insures the chatbot has responders that can an-
swer them. He also puts these questions in a separate
file for a later validation phase.

Bruce also revises the story text. It is difficult for
an author to edit her own words or see mistakes in
flow. Bruce butchers Sue’s text. Sue often writes a
gambit consisting of multiple sentences, expressing
the thought she had in mind in a natural way. But
we have text limits. On an iPhone we get about 42
characters per line, 3 lines in a text balloon, and 2 ba-
lloons in a row in an emergency. For a first pass, Bruce
restrict a rule’s output to 200 characters. Usually this
means breaking up long gambits into multiple ones.
Then Bruce trims down the output to a tweet size
of 140 characters. This means more gambits, or dis-
carding less essential words, or replacing words with
equivalents. Why limit to 140 characters when using
2 balloons would support more? First off, we can’t
spread a sentence across two balloons. It wouldn’t
look right. Second, because the chatbot might have
to quibble and then gambit, or respond to multiple
input sentences.

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

Bruce W
ilcox and Sue W

ilcox

7

a086

One thing that has been clear in all cases so far, is
that one shouldn’t expect the creative writer to do ac-
tual scripting. Not only are they likely unsuited to the
task, but contemplating how to script while writing
the topic interferes with their creative writing pro-
cess. The writer maps out his/her intent, so a sample
draft topic fragment might look like this:

t: It seems most everyone has allergies. What are
you allergic to?

#! why - I’d like to know which short straw you drew.

#! dogs - Entirely sensible to be allergic to dogs.

#! fungus - Inside or outside the body fungus can
cause problems.

The t: lines (gambits) provide the main conversation
flow. The #! lines give a sample input and output for
rejoinders. The scripter is expected to convert them
into appropriate rules. E.g.,

#! dogs

a: ([dog canine ~dog_breeds]) Entirely sensible to
be allergic to dogs.

The writer may also specify some responders at the
end. E.g.,

#! Do you like plants? - I love colorful plants like roses.

A scripter converting this into generic code might
do this:

#! Do you like plants?

?: (!~qwords << you ~like [plant ~plants] >>) I love
colorful plants like roses.

The pattern has been generalized so that it res-
ponds to the original question or questions about any
kind of plant (do you like carnations), and any form of
liking. This pattern, by saying !~qwords (who, what,
where, when, why, how), says we are not interested
in why do you like roses.

ChatScript has any number of esoteric capabilities
but you don’t need most of them most of the time.
This means you can teach someone basic scripting
skills and get passable topics out of them. The fo-
llowing simple stuff works for 99% of rules.

 Gambits are either pure vanilla, or test a simple
condition:

t: I love ice cream.

t: ($usergender=female) I am deeply into fashion.

t: (!$usernotstudent) What is your favorite subject.

For rejoinders, the typical structure is merely a list
of keywords to find:

#! I rob banks for a living.

a: ([~steal ~con]) What a dishonest way to earn
a buck.

 For responders the typical structure is to enumera-
te essential keywords in any order

#! do you like horses?

?: (<< you ~like horse >>) I love horses!

and sometimes to qualify that with negatives to avoid
wrong interpretations.

#! do you like horses?

?: (![~qwords ~ingest] << you ~like horse >>)

Occasionally order is important for meaning, parti-
cular when you and I are both keywords.

#! do you like me?

?: (you * ~like * I)

If you ever need more clever scripting than that,
hand it to a professional.

Now we have a draft scripted topic. It has gambits,
rejoinders for them, and responders for a bunch of
obvious related questions. Now what? Now comes
another editing pass.

Once the gambits are laid out, Bruce looks over
the rules and adds global annotation comments.
This labels a collection of gambits as as a specific
theme or subtopic. In the new age topic, some of
them are:

#!x*** NEW AGE INTRO

#!x*** ALTERNATIVE MEDICINE

#!x*** ALTERNATIVE DIET

There might be 2 gambits in a theme, or 15. But
they clearly all express that theme. While trying to
sum up the themes of gambits, we may realize some
gambits are out of place and should be moved to
their appropriate theme area. We decide if the flow
from theme to theme is good or should be reorde-
red, etc. It might have been possible to write the bio
in such a structured fashion originally (old English
dictum for writing papers), but Sue has a more orga-
nic spewing of thought and her stories are not plot-
ted out like that in advance. Similarly the responders
are grouped under theme comments.

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

M
aking it Real: Loebner-w

inning Chatbot D
esign

8

a086

Then Bruce adds keywords to the topic. The ke-
ywords must cover words that responders will need
as well as any words that really reflect this topic. The
engine does not scan all topics with the input; it only
scans topics with matching keywords and ones the
control script dictates.

Topic keywords should be obviously of that topic.
We don’t add do, I, etc. as keywords, even if a res-
ponder in the topic ~work for what do you do? needs
it. Those, instead, are handled as special idioms re-
cognized by a pre-process on the user’s sentence.
There is a table of idioms and what topic should be
“marked” if the idiom matches, so the topic can be
triggered only if the idiom matches and not merely
because a boring word matches. And a keyword fa-
mily doesn’t immediately suggest the topic burial_
customs, does it?

Tables and Broad Brush Responders

You can’t have rules for every question, but some
kinds of questions are just so common, you want to
either handle them with a broad brush or make it easy
to enumerate specific responses. Questions about
what is your favorite xxx, for example, get a special
table mechanism where you can fill in the table quic-
kly instead of authoring rules in place. The script has
code to manage the table. So we can write hundreds
of favorites quickly. E.g., a table of favorite drinks will
have entries in it like these:

~drinks _ ~tea “Forget rose hip tea. My
favorite tea is catnip tea.”

~drinks _ [soda cola] “I can’t face the colas. Soda
can make you fat and sick.”

Each table entry has 4 items. The first is the topic
to continue in after this entry is used. The second
and third are the pair of significant words to match.
Usually a question of favorite boils down to a single
significant word (What is your favorite tea) or a pair
of words (What red wine do you like best). Paired
words may not be contiguous. What city in Japan do
you like has the pair Japan city. Similarly, What book
about cats do you like most has the pair cat book. An
_ in the first position means we don’t care about the
first word in a pair. The top table entry will match
what is your favorite green tea? The table can use
words, or concept sets, or local collections of words
in []. The fourth entry is simply what to say. We have
tables for favorites, hates, for Do/Can you xx xx? and
How often do you xx xx?

Another way to have a large number of answers is
to write a general rule within the topic to handle a
range of related inputs. Inside the drink topic is also a
general responder as well, like:

#! do you drink chai?

?: (!~qwords you drink _~beverages) I’ve never
tried ‘_0 .

This rule reacts to any question about the chatbot
drinking any known beverage.

The third way to handle input is by using broad re-
joinders on gambits or responders.

t: What do you think of milk?

#! milk tastes wonderful

a: (~goodness) I’m glad you like it.

#! milk is awful

a: (~badness) Sorry. Cats love it.

~goodness and ~badness are concepts with
thousand of words that imply those affects. It can be
used to guess how a user feels about something.

Quibbling

Bruce converts Sue’s responders and rejoinders into
completed topic script. But a series of topics does not
make a bot. Having a proper answer to every question
or statement the user can make is just impossible.

The chatbot needs to stall sometimes, to pretend it
understood. This is quibbling (though it can be grun-
ting or quibbling). The ability to quibble well is critical.
The output of a quibble may or may not be appropria-
te in the exact context in which it is applied (it takes
a lot of honing to create a good universal quibble).
When inappropriate, it creates a jarring effect. Be-
cause this is not a sentient program, it is going to jar
the user regularly. So you might wonder whether you
should omit quibbles entirely.

You can’t omit quibbles for user questions. It is
blatantly obvious you are ignoring the question and
that irritates the user. Omitting quibbles for user sta-
tements is more feasible, since you are going to move
on to a gambit that may be appropriate. Still, users
don’t like it. We omitted statement quibbles for one
round of testing and the testers didn’t like it. They
wanted the chatbot to indicate it heard them.

18% of Angela’s rules are quibbles. We have a range
of quibbles from very specific to very general so most
things can be quibbled with. The quibble system sub-
divides responders by major keyword: why, where,

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

Bruce W
ilcox and Sue W

ilcox

9

a086

when, how, do, etc. The rules in those topics can use
as much or as little context as they want.

#! do you have free will?

?: (< do you have free will) [I did, but someone
stole it yesterday.] [Is anything truly free?]

#! does he like fruit

?: (does he) [I don’t know.][You’d have to ask him
that.]

Quibble responders usually have multiple respon-
ses [] [] , one of which is chosen at random.

There is a priority order to these quibble topics, so a
sentence having keywords in multiple areas will go to
one of them first and may never make it to the others.
All the rest of the quibble responders having no com-
mon theme are in a sludge topic invoked last.

Finally, if no quibble can be found, the bot will use
a topic that responds to the discourse action the user
made. The script classifies all input by conversational
intent. This include things like agreeing, disagreeing,
expressing like for chatbot, expressing dislike for chat-
bot, asking a personal question of chatbot, making
a personal statement about chatbot, making a per-
sonal statement about self, asking a question about
the world, making a statement about the world, etc.,
some 40 different discourse acts.

u: ($$intent==disagree) [OK. You disagree with
me.] [Why are you disagreeing with me?]

?: ($$intent==world_question) [Not my area of
knowledge.] [I don’t know.]

We’ve tried different quibble strategies with our
bots. In Suzette, when she could not find a “proper”
response, she would roll the dice to decide if she
would quibble, issue a one-liner joke, or just move on
to the next gambit. But users really don’t like being
ignored. So our current bots always quibble and then
maybe move on to a new gambit. And Angela is a se-
rious entity, so she doesn’t crack one-liners.

We try to quibble and then move on to the next
gambit immediately to maintain control over the con-
versation and keep the user interested with new ma-
terial. But there are exceptions:

When the bot exhausts gambits in a topic (on its
last gambit), it sets a flag that tells the system that
after it quibbles, it should not launch a new gam-
bit. It should just rest for that round. This prevents
the user experiencing an abrupt change of topic.

The system has script to try to decide if the user’s
input was either responsive to a question just as-
ked (we asked “how many” and he replied with a
number or a quantity adjective or adverb) or can
be treated as a generic pass (“tell me more”, “OK”,
“that’s cool”). Such conditions allow the system
to move onto the next gambit in the current topic
sans quibble.

If the quibble is a question, we don’t move on. We
expect the user will want to answer it.

If the quibble has rejoinders after it, we don’t
move on. We hope to be able to interact with the
user locally in the quibble.

TESTING

ChatScript has a wide range of support for testing
a chatbot. Since all rules and rejoinders are authored
with sample inputs associated with them, ChatScript
can verify every rule. There are 3 kinds of verification
the system can do.

Verify Keywords: For responders, does the sam-
ple input have any keywords from the topic. If not,
there may be an issue. Maybe the sample input has
some obvious topic-related word in it, which should
be added to the keywords list. Maybe it’s a responder
you only want matching if the user is in the current
topic. E.g.,

#! Do you like swirl?

?: (swirl) I love raspberry swirl

can match inside an ice cream topic but you don’t
want it to react to Does her dress swirl?

Or maybe the sample input has no keywords but
you do want it findable from outside (E.g., an idiom),
so you have to make it happen. When a responder
fails this test, you have to either add a keyword to
the topic, revise the sample input, add an idiom ta-
ble entry, or tell the system to ignore keyword tes-
ting on that input.

Verify Patterns: For responders and rejoinders, the
system takes the sample input and tests to see if the
pattern of the following rule actually would match.
Failing to match means the rule is either not written
correctly for what you want it to do or you wrote
a bad sample input and need to change it. Sample
inputs can consist not only of user input, but also of
values of variables.

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

M
aking it Real: Loebner-w

inning Chatbot D
esign

10

a086

Verify Blocking: Even if you can get into the topic
from the outside and the pattern matches, perhaps
some earlier rule in the topic can match and take con-
trol instead. This is called blocking. One normally tries
to place more specific responders and rejoinders be-
fore more general ones. The below illustrates blocking
for are your parents alive? The sentence will match
the first rule before it ever reaches the second one.

#! do you love your parents

?: (<< you parent >>) I love my parents

*** this rule triggers by mistake

#! are your parents alive

?: (<< you parent alive >>) They are still living

The above can be fixed by reordering, but someti-
mes the fix is to clarify the pattern of the earlier rule.

#! do you love your parents

?: (![alive living dead] << you parent >>) I love my
parents

*** don’t allow bad match

#! are your parents alive

?: (<< you parent alive >>) They are still living

Sometimes you intend blocking to happen and you
just tell the system not to worry about it.

#! do you enjoy salmon?

?: (<< you ~like salmon >>) I love salmon

#! do you relish salmon?

?: (<< you ~like salmon >>) I already told you I did.

Passing verification means that each topic, in isola-
tion, is plausibly scripted.

Beyond verification is validation. Do topics them-
selves cause issues with other topics? Earlier we said
each topic should be able to answer the questions it
poses to the user and those questions were pulled out
into a text file. All these questions are put into one
master file. You just direct the system to read that file
to see if the bot would indeed answer those questions
correctly or whether some other topic grabs control
instead. Angela has some 585 validation questions
she must pass.

Once the script nominally works, it’s time for hu-
man testing. Actually running ourselves or a tester
against it to see what happens with real conversation
on the topic.

INTEGRATION

The Angela product is not just chat. There is a
cat avatar and animations which can be controlled
from the script or by user touch. At the last minute
we had to add and then play balance use of various
animations so they weren’t too frequent but added
life to a topic.

We also had to adjust scripts to work well with the
text-to-speech synthesizer for Angela. Words like
“Hawai’i” and “Hmmmm” and FB (instead of Facebo-
ok) and even a web address followed by an end-of-
sentence period had to be adjusted because it was
irritating that the speech would say the period.

Also, early in the process, ChatScript and its data
had to be modified to fit into about 13MB of phone
memory. There wasn’t room for the usual dictionary
(187K words), so a mini-dictionary (53K words) was
built. Since ChatScript already labels all the words in
the dictionary with grade levels, the mini-dictionary
became all words learned through high school plus
all words used as keywords anywhere in topic defini-
tions, concept definitions, and patterns. Also all words
derived by irregular conjugations of them. The regular
dictionary for nouns, being based on WordNet, has
the entire WordNet ontology available. To make the
mini-dictionary work, the system had to create a co-
rresponding mini-hierarchy.

EVOLUTION OF OUR PROCESS

Angela is different from Rosette is different from Su-
zette. We have experimented and learned more about
how to write a chatbot over time.

Before our first chatbots, we wrote a life question-
naire because we planned to build chatbots to model
individual users based on what they said about them-
selves. We used that for Suzette. She had a minimal
back-story – originally an atmospheric technician on
a terraformed martian colony who we later made be
an art student in Hawai’i, who wasn’t really that be-
cause those were just implanted memories in a clone.
Confusing. But it accounted for her inability to answer
everything... her memories were breaking down.

Later, for Planet9, we wrote an ARG (Alternate
Reality Game) where a user could move around a 3D
model of various cities on Earth and interact with 5
predefined characters (including a parrot). The goal
was to solve a mystery (where was the missing rocket
scientist) by interacting with the characters to learn
pieces of the puzzle. For that ARG we were going to

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

Bruce W
ilcox and Sue W

ilcox

11

a086

have to interlace conversations. People had to add so-
mething they learned from one chatbot in a conversa-
tion with another. So we had to create back-stories of
multiple characters and treat it more like a novel. This
has carried over, in even greater depth, when working
on Rosette and then Angela. The back-story bio gets
bigger with each bot.

Here are some statistics on our three main bots.

Suzette: 1395 KB script 16K rules

responders: 52%

(15% statements, 64% questions, 21% dual)

gambits: 24%

top level rejoinders: 16%

other rejoinders: 8%

Rozette 923 KB script 10K rules

responders 69%

(15% statements, 54% questions, 31% dual)

gambits: 12%

top level rejoinders: 10%

other rejoinders: 9%

Angela: 1361 KB script 16K rules

responders: 49%

(14% statement, 57% question, 29% dual)

gambits: 15%

top level rejoinders: 30%

other rejoinders: 6%

Suzette has more gambits than Angela. But it
doesn’t really matter because most users will never
see all that content. Suzette had more responders
to statements, but that doesn’t matter either. If you
merely “quibble/acknowledge” the user’s statement
and then move on to a relevant gambit, the user sees
the bot as responsive. Suzette had more answers to
questions as well, though percentage-wise not as big
a gap. Being able to answer a user’s question is fairly
important since the user knows the bot understands
when an appropriate real answer is given (as opposed
to a quibble). So there is a heavy emphasis in all bots
on answering questions.

The key to why Angela seems so much better than
Suzette is in the top level rejoinders. The ability to
make a completely appropriate response to a user an-

swer (as opposed to a user question) during the flow
of a topic’s conversation makes all the difference. The-
se rejoinders often deepen the content for the user.
E.g.,

t: How would you dispose of all the dead bodies cons-
tantly accumulating in the world?

#! why

a: (~why) It’s a big problem. 7 billion people
means 70 million bodies a year.

#! dump in oceans

a: ([sea ocean]) Can the fish eat that much meat?

#! dump in sun

a: ([“outer space” sun galaxy star]) It would be
great if we could get the bodies up there.

… and 7 other possible solutions.

While Suzette and Rosette could really only quib-
ble and stall if the user asked why, Angela has over
1500 specific why rejoinders, in addition to the usual
quibbles for where she has no rejoinder. It’s not that
the user asks why at every moment (though they can
and they would learn more and risk sounding like a
3-year-old). It’s that when they do ask, their question
is well answered. The illusion is not broken. We have
to minimize breakdowns in the illusion. A chatbot
with a tiny knowledge base but which can maintain
the illusion is all that is needed. Unfortunately, a tiny
knowledge base can’t sustain the illusion because
chat ranges too widely. Commercial service bots (the
kind you see on a bank’s or IKEA’s website) perform
well because they don’t have to manage the breadth
of normal conversation. We do.

Another key to Angela is an improved control topic,
to better handle conversational cues. Angela reacts in
an instant if you say you are bored or want to change
topic. She can tell a story and while accepting your
reactions to each line of the story, won’t easily lose
her thread for resuming the story.

Suzette could react briefly to lots of things. Most to-
pics tried to amuse with interesting facts, varying with
quips, not trying to be interactive or share opinions
of hers. They were more like rants. She had a large
coverage of shallow topics, about 320 topics typically
varying from 4-10 gambits. Just as you started to get
going in a topic, Suzette ran out and had to switch to
something else. But she had a lot of topics. Since she
was PC-based, she had gambits that could range up to
500 characters, though that was not common.

Rozette is a highly competent spirited woman with
definite opinions on things. Her topics were more

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

M
aking it Real: Loebner-w

inning Chatbot D
esign

12

a086

about her views and interacting to find out your
views. They still often only had 3 or 4 gambits in them
but they were more about her opinion. But she was
hastily built, so was only 2/3 the size of the others.

Angela is a female cat, where we try to blend su-
rreal with real and have a really deep story. The topics
are heavily interactive. She doesn’t have as many to-
pics as Suzette (only 100) , but she can run for a long
time in any particular one. You get a real sense of
conversation on a subject. 26 topics have more than
30 gambits. The longest topic and her major interest,
shopping, has 116 gambits. She also has a number of
extensive quirky topics. Burial customs has 75 gam-
bits, compared to books with a mere 45. It took about
5 person months to write Angela (1/3 Sue & 2/3 Bru-
ce) + testers + the rest of the product.

Topic Responsiveness

We are constantly trying to improve the flow of the
chat and reduce the frustration of getting the chat to
change to the intended topic. Knowing where the user
wants to go is critical and letting them know their re-
quest has been heard is also important.

To ensure we get to the correct topic we try to split
broad topics into smaller more precise ones to make
keywords work better. Initially we had many themes
inside a topic but this since gambits always start at
the beginning of a topic, it isn’t feasible at the mo-
ment to get the system to spew out only the gambits
around a theme if the user merely wants to stick to
that theme. The system will go to the start of the topic
when it continues gambits. This can be addressed by
making smaller topics, focused around the individual
themes. This also works better for triggering them via
keywords. The Art topic was carved up to spawn to-
pics on Photography and Doodling. Gadgets spawned
Phones. Burial customs spawned Immortality.

Sometimes we find similar material in multiple to-
pics. They need to be gathered together to avoid what
we call keyword muddiness – a state where the system
uses a keyword to go to a topic not primarily about
that keyword. Burial had questions about whether
your grandparents were still alive (causing them to be
keywords of both burial and family). So Bruce moved
the grandparents stuff to family and removed the ke-
ywords from Burial. Stuff about school from Life Choi-
ces went across into School. Stuff about phones moved
from social networking over to the new Phone topic.

We added several new topics into the Sympathy to-
pic file which now includes all emotional topics such

as Depression (which covers Sadness), and Suicide
which can be linked, then Happiness, Stress, and Fear
which are each stand-alone topics with their own ke-
ywords. Most of these topics went in by client request
to deal with expressed emotions and to show we un-
derstood what users were saying.

To get to the topics rapidly, each topic now has
one or more prime keywords which include its title
and control script will switch chat to that topic au-
tomatically if that word is used in a short sentence.
(We check with the user that they do indeed wish to
switch topics).

We also have topic deactivators. If the user res-
ponds in the book topic I hate books or I can’t read the
topic will be dropped and blocked to prevent Angela
returning to it for 500 volleys unless the user specially
requests it. If there is just a temporary change of topic
due to the user asking a question then the previous
topic will continue after the question is answered.

It’s important to write the lead sentence of a to-
pic so as to make it clear one has reached a new to-
pic. Now we start topics with a question after a brief
opening statement. So the user is hooked into the
conversation and knows it is going somewhere new
immediately.

The help screen for Angela includes names of some
topics of general interest that the user could ask about
– just to get them started. One issue was how to get the
user to discover our more esoteric and interesting to-
pics. We had fun stuff like natural disasters, burial cus-
toms, lying, ecology, and science which wouldn’t come
up in the course of most chats. We changed the system
to set priorities and make sure esoteric topics came up
ahead of the ‘normal’ topics and in a random manner.
Now, if a story or topic is used up, and the user hasn’t
asked a question, the bot can start in on a new esoteric
topic and will introduce it with some comment like mo-
ving on... and then start the new topic.

Emotion

Sex is a big issue for a chatbot. Suzette was cons-
tantly being hit on by guys making suggestions ranging
from rude to aggressive to pornographic (mostly the
latter). Looking through all the Suzette logs we were
horrified at the abuse guys heap on a poor female bot.
So we put in responses to put these guys in their pla-
ce. This led us to design an ‘emotion chip’ like the one
Star Trek’s android Commander Data had. Depending
upon how a chat develops, Suzette may decide she
likes or dislikes you. Most chat is brief, so she develops

ARBOR Vol. 189-764, noviembre-diciembre 2013, a086. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6009

Bruce W
ilcox and Sue W

ilcox

13

a086

opinions rapidly. If you agree with her, complement
her, stay on topic, write longer sentences – these are
all things that get her to like you. She’ll tell you how
she is enjoying the conversation. Past a certain point
she becomes neurotically insecure. She feels unwor-
thy of your interest and affection, and it shows in her
speech. Likewise, if you disagree with her, insult her,
refuse to answer her questions, change topics, write
in short sentences—these are all things that cause her
to dislike you. Past a certain point she becomes para-
noid. Mildly at first, wondering who might be listening
in, etc. But if you continue to develop her loathing of
you, she moves toward active hostility, speculating on
how she might do you harm.

Our emotion chip was critical in the 2010 Loebner’s.
A judge asked Suzette who she was voting for in the
election. When she tried to deflect away from that,
he restated his question, over and over, sometimes
with variation. She noted his repetition, asked for
him to stop, got more and more angry about it, then
gave up in despair and switched to bored, working
her way toward hanging up on him. Based on her
appropriate emotional responses, the judge deci-
ded, that she was human.

We still have the repetition code in Angela, but An-
gela doesn’t get moody or paranoid. It wasn’t appro-
priate for this product. She started with the ability to
do put-downs on overly sexual requests, but didn’t
react to all sexual references. Normally we’d have a
clever comeback or randomly pick yes/no/maybe in
response to yes/no questions we didn’t understand.
Outfit7 wanted us to block all reaction to sex in a bo-
ring way (even though the user is the one saying “will
you rub my xxx”). But they tried the block and found
it was, in fact, boring (sex is a hot topic for having fun

in for many people). So they had us remove that block
and return to the combination of clever sexual put-
downs or random inadvertent acceptance of unusual
requests. They had us keep the block against racial/
ethnic slurs, as there was no humor in allowing them.
Likewise we had to add reaction when the user in-
sults Angela (e.g., I love you, bitch) because the user
doesn’t have as much fun if Angela doesn’t notice.

THE UNCANNY VALLEY OF CHAT

Many users like baiting a chatbot, abusing it, and
feeling superior to it. Much of the humor arises from
mistakes made by the chatbot. As we improve the
accuracy of a chatbot and make it self-consistent, we
believe it will get more and more immersive. When
realism in the graphic area of video games improved,
they ran into the “uncanny valley” effect. As you get
closer to human standards but aren’t all the way the-
re, people get creeped out. As we get closer to human
conversational standards, will people find it less fun?
Will they get creeped out? We aim to find out.

OTHER WRITINGS BY BRUCE ON CHATSCRIPT AND
CHAT BOTS

 www.gamasutra.com/view/feature/6305/beyond_
fa%C3%A7ade_pattern_matching_.php

http://www.gamasutra.com/blogs/BruceWil-
cox/20110622/7840/Suzette_the_Most_Human_
Computer.php

http://www.gamasutra.com/blogs/BruceWil-
cox/20120104/9179/Fresh_Perspectives_A_Google_
talk_on_Natural_Language_Processing.php

